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ABSTRACT

This document outlines a guidance equation mechanization
for use with ballistic missiles. This technique does not
require pre-launch targeting computations and is therefore

especially suitable for mobile weapons systems.
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SECTION I

INTRODUCTION

The development of a guidance technique suitable for use with any ballistic
missile is presented in this document. This technique is particularly suita-
ble for weapon systems requiring maximum flexibility (mobile systems re-
quiring a minimum operational targeting time). While an example of the
basic equations required for mechanization is given, relatively routine as-
pects of the mechanization (such as data reduction and first stage and vernier
guidance) are not discussed. This mechanization is obviously more compli-
cated than that which would be required if the equations were not self con-

tained (i.e., if targeting operations are carried out at the launch site).

The equations of motion which have been used for the explicit solution on the
free flight trajectory are derived from the assumptions that the earth's
gravitational field varies with the inverse square law and that there is no
atmosphere (see Section 3). The inadequacy of this assumption can be com-
pensated for by empirically determined target offsets, but a considerably
superior method which does not require any targeting operations at the op-

erational site is developed in Section 4.

The only inputs required by the guidance equations are latitude, longitude,
and altitude (above sea level) of the launcher and target. The guidance equa-
tions then compute all other quantities required, including launch azimuth.
The guidance inputs need to be specified sufficiently prior to launch to permit
the launch azimuth to be implemented {computation time is negligible). With
the possible exception of hardware requirements there is no other reason for
a delay between the receipt of information regarding target and launcher lo-
cations and launch of the vehicle.

A
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Simulation has shown that the one ¢ miss distance due to the inaccuracies in
this technique can easily be reduced to 200 feet. Considerably better accu-
racy may be obtained if empirical coefficients are determined carefully.

The above error does not include the effects of gravitational anomalies,
hardware inaccuracies or measurement errors.

-2-
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SECTION 2

DEFINITIONS

The following definitions are given to aid in understanding the discussion
which follows:

Explicit Guidance is a generic term for the class of guidance
equations which are a direct solution of equations of motion.
The equations of motion which are used may, or may not, rep-
resent reality with sufficient accuracy to satisfy mission objec-
tive; there is, however, a restriction in the latter case that the
inaccuracy (which is compensated for by empirical or semi-
empirical methods) must be extremely small.

Simulation is a computer (usually high-speed digital) program
which is an accurate representation of the earth, atmosphere,
missile engine and autopilot, etc., as well as the guidance
equations. This simulation then '"flies' the missile and deter-
mines performance capability, workability of the guidance
equations, etc.

Targeting is the utilization of a simulation to define and verify
any empirical constants that may be required by the guidance
equations. For many problems efficient use of the simulation

to obtain the empirical constants requires the use of auxiliary
computer programs; this kind of effort is, of course, part of
targeting. The word targeting is sometimes applied to opera-
tions (carried out at the operational site) which utilize the empir-
ical constants obtained by the process defined above as targeting.

Basic Inertial Coordinates £, n, { are earth centered with + [
passing through the north pole. These coordinates and their
derivatives are scaled so that the gravitational constant multi-
plied by the mass of the earth (GM) is unity. At some time dur-
ing the pre-launch operation, the gyros are uncaged. The inertial
coordinate system is defined at this instant and the quantity T
represents the time interval which has elapsed since this instant.
These coordinates would not necessarily be used in an actual
mechanization, particularly for an inertial system.

-3-



SECTION 3

A KEPLERIAN SOLUTION

Coordinate Systems

It is necessary to relate the position and velocity of the missile and the
target by means of an inertial coordinate frame. Once this has been
done, any appropriate criteria can be used to develop expressions for
pitch and yaw velocities. Criteria which have been used in the past and

have proven to be very satisfactory are outlined below.

The missile, target and geocentroid define a plane. The yaw component
of velocity is the component of missile velocity normal to this plane

and the pitch component of velocity is the component of missile velocity
in this plane and parallel to the radius from the geocentroid to the
missile, Pitch angles are measured positive up from the normal to

this radius. (See Figure 1 and Appendix A.)

The subscript D is used to denote burnout conditions. Adequate estimation

of p is straightforward (see Appendix A).

Orbital Parameters

The value of 1"T is defined as a compromise between minimum re-entry

dispersions, re-entry heating problems, and performance. Actually the
numerical coefficients in the definition of I‘T {Appendix A) can be chosen
to provide a good approximation to any reasonable functional relationship
for I',. The desirability of steering to a given FT is related to re-entry

T
effects and is discussed in Section 4.
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The expression for the velocity necessary to travel from any point in
space to any other point (agssuming no atmosphere and an inverse square
gravitatinonal field) can be derived from Figure 2 and the well known

orbit equation
v-om2-1)-2.-1 (1)
r a r a
where a is the semi-major axis of the orbit. From Figure 2

(2a - r?_)‘Z = [rZ sin § - (2a - rl) sin ZI'1]2

2
+ [rl -{2a - rl) cos ?.I‘l - T, cos Y]

or

r, rz(l - cos )
a:T{l +rl(1 + cos ZI“I) - rz[l + cos (¢+21‘1)] (2)

Combining Equations 1 and 2

r

rV2=-Z— R N 2(1 - cos {) (3)
171 r 2a T

— (1 + cos 2I,) - cos Y - cos (Y +2I,)

r, 1 1

Defining
6= rVZ
-7-



Figure 2. Orbit Relationships
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and choosing r, as the target and r, as burnout

2(1 - cos xpl)
6T = T (4)
;l_) (1 + cos ZFT) - cos tpD - cos (¢D + ?.I"T)
and
i)
T
Vo =\/=—— (5)
T rr
from Equation 1
r
R s (6)
T
From orbital kinematics (Reference 2}
€ sin E = /8(2 - 6)sinT (7)
€ cos E=6 -1 (8)
_3/2 _ . .
Tpp=@ [EZ -E -¢sinE, +¢ sin El] (9)
Then

| e =V(6p - 1)* + 6,2 - 57) sin’ T
=V1-6.(2-6.)cos° T (10)
i T T T

+

0

[}
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and

r
=2..D
bp=2 - —
b
Vo =\7-
D

An expression for I‘D may be found from Equation 3 as follows:

r
-5§D- (1 - cos ¢D) = ;—%(l + cos ZI"D) - cOos *D - cos (¢D + ZI‘D)

since
cos N‘D + ZI‘D) = cos ¢D cos ZI‘D - sin \pD sin ZI'D
Then
sin ZPD = Q2 - Ql(l + cos ZI‘D) (11)
where

r
i ;Tr- - cos \pD
Q = sin ¥p
2(1 - cos \pD)
T e -yl (2

-10-



Squaring Equation 11

2 _ 2 2 2
sin Zl"D- (QZ - Ql) - Z(Q2 - Ql )Ql cos ZI‘D+ Ql cos ZI‘D

or

2 2
(l + Ql)cos ZI‘D- [Z(QZ - QI)QIJ cos ZI"+[(Q2 - Ql)2 - l] =0

Then

200, - @))q, * vaaka, - @) - 4(1 + @¥)[iq, - a))? -1

cos 2T =
D 2(1 + Qf)

2
i} QI(QZ - Ql) * \/l - Q2 + ZQlQ2

2
1+Q1

Obviously the sign of the radical depends on whether a lofted or shallow
trajectory is used (the radical vanishes at ininimum energy). Since a

slightly lofted trajectory will be used (see Section 4)

2
Q,(Q, - @) -V1 - @ + 2q,q, )

cos 21 =
D 1+ aQf

A convenient specialized solution.of Kepler's equation (Eq. 9) for ballistic

missile trajectories can be developed as follows:

r
cecos E=1-~=
a

O o s oy

-11-
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Obviously E = 0 at perigee, and since a is less than the radius of the earth
n/2 < E < 31/2 throughout the trajectory. However if

.‘r_.r i l-
ET = cos.l g G (14)
L -
ZD ]
E.=cos }|-2
D" G
e o
are evaluated in the first quadrant then Equation 9 becomes
To = a>/2[E. + E + ¢(sin E, + sin E..)] (15)
FF T D D T

]2
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SECTION 4

NON-KEPLERIAN EFFECTS

Introduction

The two-body point mass central force field problem can always be reduced
to an equivalent one-body problem (Reference 2). For an inverse square
force field this becomes the '"Keplerian problem, ' and more or less com-
plete analytic treatments have been known for centuries. For practical
purposes on a ballistic missile trajectory the solution to the Keplerian

problem is in error due only to:

a. Atmospheric f rces at re-entry

b. The fact that the earth's gravitational field is not exactly
inverse square, but has other latitude dependent terms

c. Local gravitational anomalies, and

d. Solar and lunar gravity.

Fortunately these effects are quite small.

Atmospheric Effects at Re-entry

For practical purposes the only non-trivial complications arising from
inclusion of a target altitude are due to atmospheric forces at re-entry.

The principal result of these atmospheric forces is to:

a. Increase the time required to reach the target altitude

b. Cause the hit point to be less far ''down range' in the
orbit plane, and

c. Impact displacement due to atmospheric {earth)
rotation.

It is convenient to combine (a) and (c) to obtain an "effective'' time differ-

ential (which is quite small). Since I‘T has been defined as a function of

-13-
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Vo (see Fig. A-3) the two important re-entry variables (V and I') have
been reduced to a one parameter family. With this simplification it is
possible to compensate for re-entry effects (for altitudes of up to one
mile) with an rms error of about 100 ft with the following empirical

equations:

L1414 4.2 . 14,3 . 14,4 [ 14 . 14 14, 2
vpe = Ko + Kitvo e kitvZ e kitv2 4 k) VT+(K5 + KV + K VT)hT
+ (x;" + x;‘v.r + Kigv,r) h,l": (16)
14, 14 14 7
TRE = Kot K3 by + KV (a7

Equations 16 and 17 are terms in YmT and T (see Appendix A).

It is of course desirable to have wRE and TR as small as possible which

E
would require a very lofted trajectory. However when this effect is
balanced against the requirements of heating and trajectory sensitivity
(miss coefficients) the resulting compromise is a family of trajectories

slightly more lofted than the "minimum energy'' family.

Oblate Potential

The earth's potential field is usually represented as

3 5
GM r r r
_ m | o o [} . 2 0 o . 2
--—i'-o—- -;-+Jr1~ (3--31:1 9)+D-r-5f(lln 9)+~--]

where J and D are constants. The Keplerian analysis assumes that J, D,
and all higher order terms vanish, an assumption that would give intoler-
able error if not compensated for. The basis for this oblate potential
compensation is the perturbation development by Wheelon in Ref. 3.

-14-
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The D term is about one tenth percent of the size of J term (not one percent
as stated in Ref. 3) and the higher order terms are even smaller, and since
the error in the J perturbation is larger than this (due to neglect of the
second order terms in the perturbation development) primary consideration
will be given to the first order perturbation of the J term. All residual
errors will then be lumped together and can be treated empirically.

Wheelon develops (Ref. 3Eqs. 65 - 69) the following expression for cross
range miss (in present notation):

-ZJrT ¥ 2
8L = — sin AL cos OL sin OL r (X) Tx dy
8y, cos“ Ty o r(y)

x
+ cos A_cos OL rZ(X) %ixdy {18)
* o of (y)

Wheelon now sets r constant and integrates. A more general expression

is

ZJr
§L = —c-;?-— sin A cos 8 [ sin OL(l - cos qJD)f (\pD)

+cos A, cos OLWD - sin \pD)fZ(\IAD)] (19)

[Wheelon has fx(q;D) = fz(\pD) = 1]. Expressions for fl and iz {which will vary
slightly depending on the trajectory used) can now be developed empirically.
For ICBM trajectories of tactical interest the simple expression

£l=fz=(Ko+K )+(K + K, L)\p (20)

is very satisfactory.

-15-
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Since 8L is effectively a change in the desired yaw plane

-V, cos I

. D D
VYD = m SL (zu

An expression similar to Eq. 19 can be developed from Wheelon's
analysis:

~2Jr..(1 - cos qnn)i l

T 3 2 2 2

SR = —~— £.6 cos”“" T (1-Q..+1f,)+ -3ninOJ(22)

62 sin 2I, cos” T 3D D 124 3@12

D D D
where

Q.,= linz OL(Z + cos \pD) + 2 8in 0, cos OL cos A‘ sin tpD

12 L

2 2
+ cos”A_ cos” OL(I - cos upD).
The functional form of f3 is chosen to be

1
£, = (23)
3 [} 16
——— l -
l+l"’r( + €) 1]x°

The function f4 arises from a % term and thus no neat semi-empirical
relationship can be found by a constant r integration. A satisfactory
representation for ICBM trajectories of tactical interest has been found to be

fy = (-inz 0y - cos? o cos? A') (K%o + Kio 'l" + ‘:0 *‘z)

2
-2 #in @ cos 0, cos Al(x‘g’ + K300, xi‘-p" ) (24)

-16-
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Equations 22, 23 and 24 can be combined with the relationship

- .5R (25)

T
To obtain a correction to Y (see Fig. A-2).

The oblate potential also changes the time of free flight from that given by
the Keplerian solution. This variation can be approximated empirically by

the expression

2
% %
T, = (K, + K, 8,) + (K, + K 0, 0 + (K, + K 0 )y

2
E-3
-4 (K, + K8, ) sin IZAZI (26)

Local Gravitational Anomalies

Local gravitational anomalies perturb the trajectory not only in free flight
but in powered flight as well. Unfortunately these anomalies have not been
mapped completely enough to allow a definitive analysis of their effect on

trajectories of general interest. Once this mapping becomes available there

is no conceptual reason why these effects could not be included in an empiri-
cal way, although the amount of information that would have to be stored

might be prohibitive.

-17-
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Solar and Lunar Gravity

Solar and lunar gravitational fields perturb the trajectory whenever the

vehicle and the geocentroid are not equidistant from these bodies. The
perturbing acceleration is

where
SR = RZ - R1 < radius of earth

For the sun

N 2
apertsun = Zwe SR
where
o -7, rad
w ® 17/ day s 2(10 )s—e?
7
SRas 2(10°) ft
so
-6 2
a ®1.6(10" ") ft/ sec
pert“m

-18-
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Since

1 2 -6 2
s <=xa TS = 0.8(1077)(2000)" = 3 feet
Pert n Z pert . F

then

Spert’un
R ert < T a7 feet
Petsun RE

It can similarly be shown that Rpett < 1 foot, and thus effects of solar

moon

and lunar gravity can be ignored.

Residual Errors

After all the preceding empirical and semi-empirical corrections are made
there are still residual errors. These errors are from three primary

sources:

a. Inaccuracies in the Approximating Functions

Inevitable approximations exist in any empirical technique.
This is especially true for the functions given in this
section, since they are primarily a feasibility demon-
stration and could certainly be improved.

b. Neglected Effects

All terms except the J term in the potential expansion are
examples.

C. Neglect of the Inter-Dependence of the Various Effects

Trajectory perturbations due to oblateness obviously have
an effect on re-entry perturbations and vice versa.
Likewise trajectory dispersions due to non-nominal missile
parameters affect the oblateness correction (but not re-
entry since I, is a function of V..). It would be possible

to correct for these effects empitically, although they are
quite small.

T

&
e
<
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A representative plot of these residual errors as determined from simulation
is given in Figure 3. It would of course be possible to tabulate these resid-
ual errors and utilize then to obtain extreme accuracy if a small amount of
prelaunch computation is acceptable.

-20-
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APPENDIX A

GUIDANCE EQUATIONS

Equations which can be used to generate thrust termination and steering
commands are discussed in detail in Reference 1. The derivation is lengthy
and will not be given here. These equations are written without reference to
any nominal missile, which means that dispersions due to missile parameter
variations vanish except for secondary variations in the non-Keplerian effects.
The vehicle is steered to obtain V = VD, Vy = VYD and I'= I"D at burnout,
where the desired quantities are defined from Sections 3 and 4.

An illustrative example of the essential elements of a guidance equation
mechanization is given in the following figures. The symbol T represents
the duration of the computing cycle. Any value of T between 0.5 and 1.5

seconds will work equally well for practical purposes.

-23-
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Figure A-1. Prelaunch Computations
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Figure A-3. Orbital Parameters
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Seconds and Cutoff

Figure A-7. Cutoff Computation
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